§ 1065.250 CO AND CO₂ MEASUREMENTS # § 1065,250 Nondispersive infra-red analyzer. - (a) Application. Use a nondispersive infra-red (NDIR) analyzer to measure CO and CO₂ concentrations in raw or diluted exhaust for either batch or continuous sampling. - (b) Component requirements. We recommend that you use an NDIR analyzer that meets the specifications in Table 1 of §1065.205. Note that your NDIR-based system must meet the and verifications calibration §1065.350 and §1065.355 and it must also meet the linearity verification in §1065.307. You may use an NDIR analyzer that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no bias high and no bias low), regardless of the uncompensated signal's bias. ## HYDROCARBON MEASUREMENTS # § 1065.260 Flame-ionization detector. - (a) Application. Use a flame-ionization detector (FID) analyzer to measure hydrocarbon concentrations in raw or diluted exhaust for either batch or continuous sampling. Determine hydrocarbon concentrations on a carbon number basis of one, C₁. Determine methane and nonmethane hydrocarbon values as described in paragraph (e) of this section. See subpart I of this part for special provisions that apply to measuring hydrocarbons when testing with oxygenated fuels. - (b) Component requirements. We recommend that you use a FID analyzer that meets the specifications in Table 1 of §1065.205. Note that your FID-based system for measuring THC, THCE, or CH4 must meet all of the verifications for hydrocarbon measurement in subpart D of this part, and it must also meet the linearity verification in §1065.307. You may use a FID that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no bias high and no bias low), regardless of the uncompensated signal's bias. - (c) Heated FID analyzers. For compression-ignition engines, two-stroke spark-ignition engines, and four-stroke spark-ignition engines below 19 kW, you must use heated FID analyzers that maintain all surfaces that are exposed to emissions at a temperature of (191 ± 11) °C. - (d) FID fuel and burner air. Use FID fuel and burner air that meet the specifications of §1065.750. Do not allow the FID fuel and burner air to mix before entering the FID analyzer to ensure that the FID analyzer operates with a diffusion flame and not a premixed flame - (e) Methane. FID analyzers measure total hydrocarbons (THC). To deterhydrocarbons nonmethane mine (NMHC), quantify methane, CH₄, either with a nonmethane cutter and a FID analyzer as described in §1065.265, or with a gas chromatograph as described in §1065.267. Instead of measuring methane, you may assume that 2% of measured total hydrocarbons is methane, as described in §1065.660. For a FID analyzer used to determine NMHC, determine its response factor to CH₄, RF_{CH4} , as described in §1065.360. Note that NMHC-related calculations are described in §1065.660. [70 FR 40516, July 13, 2005, as amended at 75 FR 23035, Apr. 30, 2010] #### § 1065.265 Nonmethane cutter. - (a) Application. You may use a nonmethane cutter to measure CH_4 with a FID analyzer. A nonmethane cutter oxidizes all nonmethane hydrocarbons to CO_2 and H_2O . You may use a nonmethane cutter for raw or diluted exhaust for batch or continuous sampling. - (b) System performance. Determine nonmethane-cutter performance as described in §1065.365 and use the results to calculate NMHC emission in §1065.660. - (c) *Configuration*. Configure the nonmethane cutter with a bypass line if it is needed for the verification described in §1065.365. - (d) Optimization. You may optimize a nonmethane cutter to maximize the penetration of CH_4 and the oxidation of ### **Environmental Protection Agency** all other hydrocarbons. You may humidify a sample and you may dilute a sample with purified air or oxygen (O₂) upstream of the nonmethane cutter to optimize its performance. You must account for any sample humidification and dilution in emission calculations. [70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008] ### § 1065.267 Gas chromatograph. - (a) Application. You may use a gas chromatograph to measure CH₄ concentrations of diluted exhaust for batch sampling. While you may also use a nonmethane cutter to measure CH₄, as described in §1065.265, use a reference procedure based on a gas chromatograph for comparison with any proposed alternate measurement procedure under §1065.10. - (b) Component requirements. We recommend that you use a gas chromatograph that meets the specifications in Table 1 of §1065.205, and it must also meet the linearity verification in §1065.307. NO_{X} and $\mathrm{N}_{\mathsf{2}}\mathrm{O}$ Measurements #### § 1065.270 Chemiluminescent detector. - (a) Application. You may use a chemiluminescent detector (CLD) to measure NO_X concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept a CLD for NO_X measurement, even though it measures only NO and NO2, when coupled with an NO2-to-NO converter, conventional engines since aftertreatment systems do not emit significant amounts of NO_X species other than NO and NO2. Measure other NO_X species if required by the standard-setting part. While you may also use other instruments to measure NO_x, as described in §1065.272, use a refprocedure based chemiluminescent detector for comparison with any proposed alternate measurement procedure under §1065.10. - (b) Component requirements. We recommend that you use a CLD that meets the specifications in Table 1 of §1065.205. Note that your CLD-based system must meet the quench verification in §1065.370 and it must also meet the linearity verification in §1065.307. You may use a heated or unheated CLD, and you may use a CLD that operates at atmospheric pressure or under a vacuum. You may use a CLD that has compensation algorithms that are functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value for any compensation algorithm is 0.0% (that is, no bias high and no bias low), regardless of the uncompensated signal's bias. - (c) NO_2 -to-NO converter. Place upstream of the CLD an internal or external NO_2 -to-NO converter that meets the verification in §1065.378. Configure the converter with a bypass line if it is needed to facilitate this verification. - (d) *Humidity effects*. You must maintain all CLD temperatures to prevent aqueous condensation. If you remove humidity from a sample upstream of a CLD, use one of the following configurations: - (1) Connect a CLD downstream of any dryer or chiller that is downstream of an NO_2 -to-NO converter that meets the verification in § 1065.378. - (2) Connect a CLD downstream of any dryer or thermal chiller that meets the verification in § 1065.376. - (e) Response time. You may use a heated CLD to improve CLD response time. [70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008] # § 1065.272 Nondispersive ultraviolet analyzer. (a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer to measure NO_X concentration in raw or diluted exhaust for batch or continuous sampling. We generally accept an NDUV for NO_X measurement, even though it measures only NO and NO2, since conventional engines aftertreatment systems do not emit significant amounts of other NO_X species. Measure other NO_X species if required by the standard-setting part. Note that good engineering judgment may preclude you from using an NDUV analyzer if sampled exhaust from test engines contains oil (or other contaminants) in sufficiently high concentrations to interfere with proper operation.